Задачник

К «Задачнику» прилагаются «Ответы на задачи», где даны округленные значения (с небольшой точностью). Туда можно заглянуть, имея свою версию ответа. Свои ответы надо искать с нормальной точностью порядка 3-х или 4-х значащих цифр и выслать их по адресу: www.aljuel.eu По этому же адресу рекомендуется задавать вопросы или пожелания, что автору позволяет улучшить качество учебного материала. Просьба задавать вопросы грамотно и корректно, не жалея времени на точные формулировки.

1. Основы теории параллельного инвертора тока

Задача 1

Найти среднее значение выпрямленной синусоиды, если действующее напряжение 220В.

Задача 2

Исходные данные:

- все тиристоры идеальные ключи;
- коммутация инвертора мгновенная, угол γ=0;
- напряжение контура синусоидальное;
- эффективное напряжение контура Ue=800B;
- рабочая частота f=1кГц;
- угол управления β=30°.

Найти:

- среднее напряжение противоэдс **Ed**;
- предоставляемое время выключения tq1 тиристоров инвертора.

Задача 3

Исходные данные как в задаче 1 плюс добавление:

- ток в дросселе Ld считается идеально сглаженным;
- мощность на выходе Ре = 800 кВт;
- считается, что углу управления инвертора β =30° соответствует угол управления выпрямителя α =0° (выпрямитель полностью открыт);
- фазную индуктивность и активное сопротивление питающего сетевого трансформатора не учитывать.

Найти параметры сетевого трансформатора:

- эффективное линейное напряжение Uab;
- эффективный фазный ток la.

Частоту пульсаций напряжения на выходе выпрямителя ud обозначим f1, а частоту пульсаций напряжения противоэдс ed обозначим f2. Найти отношение частот f2/f1.

Задача 4

Допущения:

Напряжение контура синусоидальное, коммутация выпрямителя и инвертора мгновенная, γ =0, δ = β = ϕ ; Ток в дросселе идеально сглажен, id = \mathbf{Id} , и нет активных потерь, \mathbf{Ed} = \mathbf{Ud} .

Исходные данные:

Паспортное время выключения $tq=63\mu s$; минимальный угол выключения δ min находить из расчета f=1kHz; Линейное напряжение сети Uab=380V;

Номинальный режим: α =0, Ue=800V, Id=1000A;

Ограничение тока в режиме 3: **Idmin**=100A.

Найти:

В каких режимах регулирования (1, 2, 3) находится САР в следующих точках: (Ue; Re) = (160V; 2 Ω), (170V; 2 Ω), (630V; 2 Ω), (610V; 2 Ω), (500V; 5 Ω), (500V; 7 Ω), (650V; 7 Ω), (650V; 9 Ω) Найти углы управления α и β в этих точках (угол α находить с учетом имитации нулевого вентиля).